
J
H
E
P
0
3
(
2
0
0
6
)
0
7
9

Published by Institute of Physics Publishing for SISSA

Received: February 6, 2006

Accepted: March 13, 2006

Published: March 24, 2006

Remarks on Hawking radiation as tunneling from the

BTZ black holes

Shuang-Qing Wu and Qing-Quan Jiang

College of Physical Science and Technology, Central China Normal University, Wuhan,

Hubei 430079, People’s Republic of China

E-mail: sqwu@phy.ccnu.edu.cn, jiangqingqua@126.com

Abstract: Hawking radiation viewed as a semiclassical tunneling process from the event
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momentum when the effect of the emitted particle’s self-gravitation is incorporated. In

contrast to previous analysis of this issue in the literature, our result obtained here fits well

to the Parikh-Wilczek’s universal conclusion without any modification to the Bekenstein-

Hawking area-entropy formulae of the BTZ black hole.
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Ever since Parikh and Wilczek [1] put forward a semiclassical framework to implement

Hawking radiation as a tunneling process across the horizon of the static spherically sym-

metric black holes and demonstrated that the emission spectrum of black hole radiance is

not strictly pure thermal, there have been considerable efforts to generalize this work to

those of various spherically symmetric black holes [1 – 3], and all the obtained results are

very successful to support the Parikh-Wilczek’s prescription. There also have some recent

attempts [4] to extend this approach to the case of some stationary axisymmetric geome-

tries, however, to the best of our knowledge, the treatments made in these researches [4]

are not completely satisfactory until very recently we [5] present a plausible solution to

this problem in the Kerr and Kerr-Newman black hole case.

As far as the case of a (2 + 1)-dimensional Bañados-Teitelboim-Zanelli (BTZ) [6]

black hole is concerned, several investigations along this line have also been done [7 – 11].

For instance, Hawking radiation as a tunneling process from the charged and uncharged

nonrotating BTZ black holes is discussed in ref. [7], while the spinning BTZ black hole case

is investigated in [8, 9]. Vagenas [10] has also dealt with the case of the Achúcarro-Oritz

black hole [11] which is the Kaluza-Klein reduction of the (2 + 1)-dimensional BTZ model.

We mention that a different methodology to apply the tunneling picture in the rotating

BTZ black hole case has also been advised [12], which may be attributed to the complex

path method [13].

In this note, we shall reexamine Hawking radiation as tunneling from the rotating

BTZ black hole by taking into account not only the energy conservation but also the

conservation of angular momentum and show that the Parikh-Wilczek’s universal relation

can be preserved without modifying the Bekenstein-Hawking entropy expression of the

BTZ black hole. This result is in contrast with previous analysis on the same subject [8],

where the main result obtained there does not fit well to the universal one given by Parikh-

Wilczek [1], but acquires a ‘self-gravitation’ correction to the Bekenstein-Hawking entropy

formulae. We think the reason for this is that the rotation degree of freedom of the BTZ

black hole had not been considered there. In addition, we shall revisit the same subject in

a different choice of coordinate gauge also.

The BTZ black hole solution is an exact solution to Einstein field equation in a (2 +

1)-dimensional theory of gravity with a negative cosmological constant (Λ = −1/l2). The

corresponding line element is

ds2 = −∆dt2 +
dr2

∆
+ r2

(
dφ − J

2r2
dt

)2
, (1)

where the lapse function

∆ = −M +
r2

l2
+

J2

4r2
, (2)

in which two integration constants M and J denote the ADM mass and angular momentum

of the BTZ black hole, respectively. (The BTZ unit G3 = 1/8 is adopted through out this

paper.)

The outer (event) and inner horizons are given by the condition ∆ = 0, and read

r2
± = l2

M ±
√

M2 − J2/l2

2
. (3)
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The Bekenstein-Hawking entropy of the spinning BTZ black holes is twice the perimeter

L of the event horizon

S(M,J, l) = 2L = 4πr+ , (4)

the surface gravity and angular velocity at the event (outer) horizon are easily evaluated

κ =
1

2

d∆

dr

∣∣∣
r=r+

=
r2
+ − r2

−

r+l2
, Ω+ = − gtφ

gφφ

∣∣∣
r=r+

=
J

2r2
+

=
r−
r+l

. (5)

The idea of Parikh-Wilczek’s method is to describe the BTZ black hole background as

dynamical by treating the Hawking radiation as a tunneling process. In order to apply this

methodology to the case of a rotating BTZ black hole and to do an explicit computation

of the tunneling rate, a key trick is to introduce a Painlevé-type coordinate system that

is well-behaved at the event (outer) horizon. There are essentially two slightly different

approaches to arrive at this aim. The first is that one must firstly find a Painlevé-BTZ co-

ordinate system and then transforms it into the dragging coordinate system. This method

is well addressed by us in ref. [5], where the reason why one must adopt a dragging co-

ordinate system is also explained in details there. Vagenas [8] only considered the energy

conservation but no angular momentum conservation, i.e., he viewed the ADM mass of the

BTZ black hole can fluctuate but the angular momentum J is kept fixed. [Note that the

total ADM mass is kept fixed while the mass of the BTZ black hole decreases due to the

emitted radiation.] He only performed the first step without further transforming it into

the dragging coordinate system in his analysis; at a cost, he had to modify the well-known

Bekenstein-Hawking area-entropy formulae of the BTZ black hole. The second one is to

reverse the order of the above two steps. That is, one firstly transforms the metric (1) into

the dragging coordinate system and then seeks a Painlevé-type coordinate transformation.

In the former step of this method, the resultant metric [9, 10] for the spinning BTZ black

hole is (after performing a dragging coordinate transformation dφ = J/(2r2)dt)

ds2 = −∆dt2 +
dr2

∆
, (6)

which represents a (1 + 1)-dimensional hypersurface in the (2 + 1)-dimensional BTZ

spacetime. This line element (6) is, in fact, identified with that of the Achúcarro-Oritz black

hole [11] which is the Kaluza-Klein reduction of the (2 + 1)-dimensional BTZ black hole.

The subsequent tunneling analysis [9] essentially reproduces those of a two-dimensional

dilatonic black hole [10].

It should be pointed out that the second method is only effective in the 3-dimensional

case unlike the first one which is universal in any dimensions. In what follows, we shall

adopt the first method. For this purpose, we introduce the time coordinate τ and the

angular coordinate ϕ by imposing the ansätz:

dt = dτ −
√

1 − F

∆
dr , (7)

dφ = dϕ −
( J

2r2

)√
1 − F

∆
dr , (8)

where we choose the function F = ∆ as Vagenas did in ref. [8].
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Obviously the above transformations (7), (8) eliminate the coordinate singularities at

the horizons r±. The line element (1) is now written as a Painlevé-type form

ds2 = −∆dτ2 + 2
√

1 − ∆dτdr + dr2 + r2
(
dϕ − J

2r2
dτ

)2

= −dτ2 + (
√

1 − ∆dτ + dr)2 + r2
(
dϕ − J

2r2
dτ

)2
. (9)

As explained in ref. [5], there are two essential reasons that one must further transform

the above Painlevé-BTZ metric (9) into a dragging coordinate system; The first reason is

that just as the original BTZ line element (1) the infinite red-shift surface rTLS = l
√

M

does not coincide with the outer horizon r+ so that the geometrical optical limit cannot be

used since the tunneling computation is essentially a kind of WKB (s-wave) approximation.

The other is that one must consider the dragging effect in a rotating black hole spacetime

since the physical field must be dragged also in a rotating background spacetime. So a

physically reasonable description must be within a dragging coordinate system, which can

be equivalently to state that an observer is rest at such a reference system. Moreover,

by performing a dragging coordinate transformation dϕ = J/(2r2)dτ , the infinite red-shift

surface coincides with the event horizon in the new line element which shall be referred to

as a dragged Painlevé-BTZ metric

dŝ2 = −∆dτ2 + 2
√

1 − ∆dτdr + dr2 = −dτ2 + (
√

1 − ∆dτ + dr)2 , (10)

so that the WKB approximation can be applied now.

It is easily to observe that the above metric (10) can also be deduced from the line

element of a Achúcarro-Oritz black hole [11] by carrying out only the temporal coordinate

transformation (7). This implies that the dragged Painlevé-BTZ (10) can also be obtained

by means of the second method mentioned above. The reason why two different procedures

lead to the same result is that the transformations (7), (8) keep the dragging angular

velocity Ω unchanged

Ω =
dφ

dt
=

dϕ

dτ
=

J

2r2
. (11)

However it should be stressed that this coincidence only occurs in the three-dimensional

case, in higher dimensions two different methods in general derive two distinct line elements.

To apply Parikh-Wilczek’s semiclassical tunneling analysis, the radial null (dŝ2 = 0)

geodesics followed by a massless particle need to be determined as follows

ṙ ≡ dr

dτ
= ±1 −

√
1 − ∆ , (12)

where the signs + and − correspond to the outgoing and ingoing geodesics, respectively,

under the assumption that τ increases towards future.

Let us now focus on a semiclassical treatment of the associated radiation (outgoing

massless particle). We adopt the picture of a pair of virtual particles spontaneously created

just inside the event horizon. The positive energy particle tunnels out from the outer

horizon while the negative partner is absorbed by the black hole resulting in a decrease in

the mass. In the case of the rotating BTZ black hole with fixed angular momentum J , the
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emitted particle is simply visualized as a shell of energy (mass) ω. Taking into account the

energy conservation, we must fix the total ADM mass and let the ADM mass M of the

BTZ black hole vary. If a shell of energy ω is radiated outwards the outer horizon, then

the BTZ black hole mass will be reduced to M −ω, so the line element will be modified to

dŝ2 = −∆̃dτ2 + 2

√
1 − ∆̃dτdr + dr2 , (13)

and the shell will accordingly travel on the modified geodesics

ṙ = 1 −
√

1 − ∆̃ =
∆̃

1 +
√

1 − ∆̃
, (14)

where the lapse function ∆ is modified to ∆̃ with the replacement of mass M by M − ω,

∆̃ = −(M − ω) +
r2

l2
+

J2

4r2
. (15)

Since the emission rate from a spinning BTZ black hole can be expressed in terms of

the imaginary part of the action for an outgoing positive-energy particle as

Γ = e−2 ImS , (16)

we therefore need to evaluate the imaginary part of the action

Im S = Im

∫ rout

rin

prdr = Im

∫ rout

rin

∫ pr

0
dp′rdr , (17)

for such a particle which crosses the event horizon outwards from rin to rout (Note that:

rin = r+ > rout = r̃+), where

r2
out = l2

(M − ω) +
√

(M − ω)2 − J2/l2

2
. (18)

The transition from the momentum variable to the energy variable can be made by

using Hamilton’s equation of motion

ṙ =
dH

dpr

=
d(M − ω)

dpr

, (19)

and eq. (14). After some calculations we get the explicit result

Im S = Im

∫ rout

rin

∫ M−ω

M

d(M − ω′)dr

1 −
√

1 + (M − ω′) − r2

l2
− J2

4r2

= 2π(rin − rout) . (20)

Apparently the emission probability depends not only on the mass M and angular momen-

tum J of the BTZ black hole but also on the energy ω of the emitted massless particle

Γ = e−2 ImS = e4π(rout−rin) = e∆S , (21)

where ∆S = S(M −ω, J, l)−S(M,J, l) is the change in the entropy of the BTZ black hole

before and after the emission of the shell of energy ω.

– 4 –



J
H
E
P
0
3
(
2
0
0
6
)
0
7
9

We see that the tunneling rate fits well to the universal result obtained by Parikh

and Wilczek [1] in the Schwarzschild and Reissner-Nordström black hole case, without

modifying the standard area-entropy expression of a rotating BTZ black hole. This is in

contrast with the previous result obtained for a spinning BTZ black hole with a fixed J [10].

We deduce that the entropy of the (2 + 1)-dimensional BTZ black hole is still proportional

to its horizon area, therefore, it is clear that previous modification to the Bekenstein-

Hawking area-entropy formulae for the BTZ black hole is not necessary [9] although the

emitted particle’s self-gravitation effect is incorporated.

However, it should be noted that the preceding discussion is limited to the case of

energy conservation only. Since we are considering a spinning BTZ black hole, so the

rotation degree of freedom should be well addressed also. This can be compensated by

treating the emitted massless particle as a shell of energy ω and angular momentum j.

Now taking into account not only the energy conservation but also the conservation of

angular momentum, we must fix the total ADM mass and total angular momentum, but

let the ADM mass M and angular momentum J of the BTZ black hole vary. If a shell

of energy ω and angular momentum j tunnels out from the outer horizon, then the BTZ

black hole mass and angular momentum will be reduced to M − ω and J − j, respectively.

Therefore the modified line element and modified radial null geodesics are still respectively

represented by eqs. (13) and (14) with the lapse function ∆ replaced by

∆̃ = −(M − ω) +
r2

l2
+

(J − j)2

4r2
. (22)

It follows that the evaluation of the imaginary part of the action is of no difficulty

to complete by eliminating a cyclic coordinate ϕ in the Lagrangian function and goes as

follows

ImS = Im
[ ∫ rout

rin

prdr −
∫ ϕout

ϕin

pϕdϕ
]

= Im

∫ rout

rin

[ ∫ pr

0
dp′rdr −

∫ pϕ

0
dp′ϕdϕ

]

= Im

∫ rout

rin

[ ∫ (pr,pϕ)

(0,0)

(
ṙdp′r − ϕ̇dp′ϕ

)]
dr

ṙ
, (23)

where pr and pϕ are two canonical momenta conjugate to the coordinates r and ϕ, respec-

tively. As before, rin = r+ and rout = r̃+, which is given by

r2
out = l2

(M − ω) +
√

(M − ω)2 − (J − j)2/l2

2
= r̃2

+ , (24)

are the locations of the event horizon before and after a particle tunnels out.

To remove the momentum in favor of energy, we can make use of the Hamilton’s

equations

ṙ =
dH

dpr

∣∣∣
(r;ϕ,pϕ)

=
d(M − ω)

dpr
,

ϕ̇ =
dH

dpϕ

∣∣∣
(ϕ;r,pr)

= Ω̃
d(J − j)

dpϕ
, (25)
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where dH(ϕ;r,pr) = Ω̃d(J − j) represents the energy change of the black hole because of the

loss of angular momentum when a particle tunnels out, and the dragging angular velocity

is given by

Ω̃ =
J − j

2r2
. (26)

Now substituting eqs. (14) and (25) into (23) and interchanging the order of integration

yields

ImS = Im

∫ rout

rin

∫ (M−ω,J−j)

(M,J)

[
d(M − ω′) − Ω̃d(J − j′)

]dr

ṙ

= Im

∫ (M−ω,J−j)

(M,J)

∫ rout

rin

1 +
√

1 − ∆̃

∆̃

[
d(M − ω′) − (J − j′)

2r2
d(J − j′)

]
dr

= 2π(rin − rout) , (27)

thus the tunneling probability

Γ = e−2 ImS = e4π(rout−rin) = e∆S , (28)

reproduces the Parikh-Wilczek’s standard result for the tunneling picture, where ∆S =

S(M − ω, J − j, l) − S(M,J, l) is the change in the entropy of the BTZ black hole before

and after the particle emission. Again we see that there is no need to modify the well-

known Bekenstein-Hawking area-entropy relation of a spinning BTZ black hole even when

we incorporate the particle’s self-gravitation effect.

In what follows, we would like to point out that the ansätz for the coordinate trans-

formations (7), (8) with the choice of the function F = ∆ is not unique. Alternatively we

can make a different choice of the function

F =
∆

∆0
, ∆0 = ∆|M=0 =

r2

l2
+

J2

4r2
. (29)

With this choice for the coordinate transformations (7), (8), the line element (1) is now

transformed into the form

ds2 = −∆dτ2 + 2

√
1 − ∆

∆0
dτdr +

dr2

∆0
+ r2

(
dϕ − J

2r2
dτ

)2

= −∆0dτ2 +
(√

∆0 − ∆dτ +
dr√
∆0

)2
+ r2

(
dϕ − J

2r2
dτ

)2
. (30)

Similarly the dragging coordinate transformation dϕ = J/(2r2)dτ further reduces the above

line element to

dŝ2 = −∆dτ2 + 2

√
1 − ∆

∆0
dτdr +

dr2

∆0
= −∆0dτ2 +

1

∆0

(√
1 − ∆

∆0
dτ + dr

)2
, (31)

from which the radial null (dŝ2 = 0) geodesics followed by a massless particle are determined

ṙ = ∆0

(
± 1 −

√
1 − ∆/∆0

)
. (32)
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Incidentally we point out that the line element (31) can also be derived by using the second

approach mentioned above.

Now the explicit tunneling computation completely repeats the preceding procedure

with the emitted particle being viewed as a shell of energy ω and angular momentum j. By

considering the particle’s self-gravitation effect and the conservation of energy as well as

that of angular momentum, when a shell of energy ω and angular momentum j is radiated

outwards the outer horizon, then the ADM mass M and angular momentum J of the BTZ

black hole will be reduced to M − ω and J − j, respectively. Accordingly the line element

and radial null geodesics will be modified as

dŝ2 = −∆̃dτ2 + 2

√
1 − ∆̃/∆̃0dτdr +

dr2

∆̃0

, (33)

ṙ = ∆̃0

(
1 −

√
1 − ∆̃/∆̃0

)
=

∆̃

1 +

√
1 − ∆̃/∆̃0

, (34)

where

∆̃ = −(M − ω) +
r2

l2
+

(J − j)2

4r2
, ∆̃0 =

r2

l2
+

(J − j)2

4r2
. (35)

Note that near the outer horizon r ≈ r̃+, the modified radial null geodesic has the

asymptotic behavior

ṙ ≈ κ̃(r − r̃+) , κ̃ =
1

2

d∆̃

dr

∣∣∣
r=r̃+

, (36)

and the dragging angular velocity takes its value at the event horizon

Ω̃+ =
J − j

2r̃2
+

, (37)

so it is easily to see that the imaginary part of the action is dominated by its value at the

outer horizon

Im S = Im

∫ rout

rin

∫ (M−ω,J−j)

(M,J)

[
d(M − ω′) − Ω̃d(J − j′)

]dr

ṙ

≈ Im

∫ (M−ω,J−j)

(M,J)

∫ rout

rin

[
d(M − ω′) − Ω̃+d(J − j′)

] dr

κ̃(r − r̃+)

= −
∫ (M−ω,J−j)

(M,J)

π

κ̃

[
d(M − ω′) − (J − j′)

2r̃2
+

d(J − j′)
]
. (38)

On the other hand, from the event horizon equation

∆̃|r=r̃+
= −(M − ω) +

r̃2
+

l2
+

(J − j)2

4r̃2
+

= 0 , (39)

one can use a simple algebra approach to prove the differential mass formulae [14] of the

first law of a spinning BTZ black hole

d(M − ω) − (J − j)

2r̃2
+

d(J − j) =
d∆̃

dr

∣∣∣
r=r̃+

dr̃+ = 2κ̃dr̃+ . (40)
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Inserting the identity (40) into the integral (38), the final result is very concise

Im S = −2π

∫ rout

rin

dr̃′+ = 2π(rin − rout) = −1

2
∆S , (41)

and restores the standard expression for the tunneling rate.

To summarize, we have revisited Hawking radiation as a semiclassical tunneling pro-

cess from the outer horizon of a rotating BTZ black hole by taking into account the energy

conservation and the conservation of angular momentum. The Parikh-Wilczek’s universal

conclusion can be retained without modifying the well-known Bekenstein-Hawking area-

entropy formulae of the BTZ black hole. This result is in contrast with previous analysis

of the same subject in the literature. Besides, we have also shown that the so-called

Painlevé-type coordinate transformation is not unique, two different choices of the coordi-

nate transformation lead to the same result. This demonstrates that our discussion present

here is consistent on its behalf.
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